Neural-Symbolic Cognitive Reasoning
Anno:
2010
Casa editrice:
Springer
Segnalato da
Calogero Bonasia
Altri libri consigliati
da Calogero Bonasia

Neural-Symbolic Cognitive Reasoning

Humans are often extraordinary at performing practical reasoning.

There are cases where the human computer, slow as it is, is faster than any artificial intelligence system. Are we faster because of the way we perceive knowledge as opposed to the way we represent it?

The authors address this question by presenting neural network models that integrate the two most fundamental phenomena of cognition: our ability to learn from experience, and our ability to reason from what has been learned.

This book is the first to offer a self-contained presentation of neural network models for a number of computer science logics, including modal, temporal, and epistemic logics.

By using a graphical presentation, it explains neural networks through a sound neural-symbolic integration methodology, and it focuses on the benefits of integrating effective robust learning with expressive reasoning capabilities.

The book will be invaluable reading for academic researchers, graduate students, and senior undergraduates in computer science, artificial intelligence, machine learning, cognitive science and engineering. It will also be of interest to computational logicians, and professional specialists on applications of cognitive, hybrid and artificial intelligence systems.

Articoli correlati

Architetture neuro-simboliche per sistemi multi-agente

Ho passato trent'anni a costruire sistemi che dovevano funzionare. Ho imparato a diffidare di chi vende soluzioni prima di aver capito il problema. Questo articolo nasce da una curiosità: come si costruiscono sistemi multi-agente affidabili quando nessun singolo componente può garantire affidabilità? La risposta tecnica si chiama architettura neuro-simbolica basata su grafi di conoscenza. Non ho cercato di semplificare: la complessità tecnica è la sostanza del problema. Chi arriva in fondo avrà gli strumenti per distinguere promesse di marketing da capacità ingegneristiche reali, e potrà porre domande più consapevoli sui sistemi che governano la vita collettiva.